
Ore Geology Reviews 161 (2023) 105653

Available online 3 September 2023
0169-1368/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Big data analytics for mining geochemistry of gold mineralization: The 
Gandy gold deposit, the Toroud-Chah Shirin (TCS) belt, north Iran 

Mahnaz Abedini a, Mansour Ziaii a, Timofey Timkin b, Amin Beiranvand Pour c,* 

a Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran 
b School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia 
c Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia   

A R T I C L E  I N F O   

Keywords: 
Big data analytics 
Geoscience big data 
Mining geochemistry 
Mineralogical and geochemical type 
Bayesian 
Geochemical spectrum 
Gandy gold deposit 

A B S T R A C T   

Due to the complexity of the gold element, the mineralogical and geochemical investigations are significant to 
trace the gold behavior in sedimentary, metamorphic, magmatic, and post-magmatic processes and to identify 
the physicochemical conditions (i.e., pH, Eh, temperature, pressure) of concentration in the ore bodies. The trace 
elements may be concentrated as the primary or secondary haloes in endogenic and exogenic deposits with multi- 
formational types. Identification and separation of multi-formational geochemical halos associated with ore 
bodies have been the most significant challenge of gold deposits. Mining Geochemistry and Big Data analytics 
have become essential to identify the multi-formational geochemical anomalies for gold exploration in the 
Commonwealth of Independent States (CIS) countries. During the last three decades, pattern recognition tech
niques such as Bayesian and Geochemical spectra have been used to determine mineralogical and geochemical 
types of multi-formational anomalies. Big Data analytics has been used for integrating multi-type geoscience data 
and pattern recognition techniques to assess geochemical anomalies. In this study, Big Data analytics were used 
to generate the mineralogical and geochemical type (MGT) quantitative models based on the Bayesian, 
geochemical spectrum and hybrid methods for investigating the distribution of trace element contents of pyrite, 
galena, and sphalerite in the Gandy Gold Deposit, the Toroud-Chah Shirin (TCS) belt, north Iran. The multi- 
formational geochemical anomalies associated with gold mineralization in the Gandy deposit indicated a 
multi-MGT anomaly superposition, which is a combination of two MGTs: Au + Polymetals and Au + sulfide. The 
results of this study demonstrated a new perspective on the distribution of geochemical anomalies and the multi- 
MGT geochemical modeling for gold exploration in the TCS belt. Consequently, the instigated approach is greatly 
conceivable and applicable to reveal contrasting near-ore multi-formational geochemical haloes for gold 
exploration in many other metallogenic provinces.   

1. Introduction 

During the last three decades, Mining geochemistry methods have 
been applied to recognize geochemical anomalies related to blind 
mineralization (e.g., Grigorian, 1992; Ziaii et al., 2009a; Ziaii et al., 
2012; Safari et al., 2016; Safari et al., 2018; Ziaii et al., 2019; Safari and 
Ziaii, 2019; 2020), to gold mineralization (Safonov, 1997; Ziaii et al., 
1999; Grigorian et al., 1999a, 1999b; Veselovskii and Meshcheryakova, 
2007; Ziaii et al., 2009b), and to mineral prospectivity mapping (MPM) 
(e.g., Ziaii et al., 2010; Ziaii et al., 2011; Timkin et al., 2022). Veselovskii 
and Meshcheryakova (2007) and Ziaii et al. (2009b) presented the 
structure of a data bank on the geology of mineral resources. 

In recent years, Big Data (BD), given by Doug Laney (2001), has been 
the fourth scientific paradigm with the regular production of huge 
amounts of data. Hu, Wen, Chua and Li (2014) identified volume, 
generated rate, structure, data source, data integration, data store and 
access as the key factors which can discriminate between big data and 
traditional data. It has become a big challenge to process BD within an 
acceptable time and amount of resources. In order to efficiently extract 
value from BD, new methods are needed to process big data. For this 
reason, Big Data Analytics (BDA) has become a key factor to reveal 
hidden information and achieve competitive advantages (Philip, 2011; 
Chong and Shi, 2015). Big Data Analytics is an emerging field since 
massive storage and computing capabilities have been made available 
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(Baumann et al., 2016). Big data applications use BDA techniques to 
efficiently analyze large amounts of data (Mohamed et al., 2020). BD has 
instigated research on data mining in multiple fields (e.g., Abedini et al., 
2018; Chen and Wang, 2018; Tewari and Dwivedi, 2019; Sun and 
Scanlon, 2019). 

Earth sciences are likely to benefit from BDA techniques supporting 
the processing of the large number of datasets (Baumann et al., 2016). 
Earth scientists are dedicated to extract potential information from BD to 
find solutions to problems of the geosciences (Zuo and Xiong, 2020). 
Data prediction aims to provide the prediction of geological events 
which is the core application of BD to extract geoscience features and 
integrate the geoscience variables to support decision-making (e.g., Ma 
et al., 2015; Baumann et al., 2016; Liu et al., 2018; Zuo et al., 2019; Zue 
and Xiong, 2020; Xu and Zhang, 2023). BDA brings a novel way for 
identifying geochemical anomalies in mineral exploration because it 
involves processing of the whole geochemical dataset to reveal statisti
cal correlations between geochemical patterns and known mineraliza
tion (Zue and Xiong, 2018). Traditional methods of processing 
geochemical data mainly involve the identification of positive 
geochemical anomalies related to mineralization but ignore negative 
geochemical anomalies. Therefore, the identified geochemical anoma
lies do not completely reflect the desired geochemical signature of 
mineralization, leading to uncertainty in geochemical exploration (Zue 
and Xiong, 2018). 

The growth of Big Data and Analytics techniques has promoted 
innovation and novel approaches to integrate mineral exploration and 
evaluation, leading to the development of various mining geochemistry 
methods for mineral exploration (e.g., Veselovskii and Meshcheryakova, 
2007; Ziaii et al., 2009a,b; Ziaii et al., 2012; Xiong et al., 2018; Zuo and 
Xiong, 2018; 2020; Li et al., 2020; Chen et al., 2022; Li et al., 2022; 
Zhang et al., 2023). There are many challenges in the task of mineral 
exploration and assessment of deposits using BD. The data are inherently 

complex and of great significance to the spatial relevance of deposits (Li 
et al., 2020). However, the data pattern becomes gradually complex, and 
the relationship among the data gradually expands along with the 
growth of data volume, contributing to a greater challenge to classifi
cation and prediction, and resulting in poor performance of traditional 
processing methods. BDA can bring new ideas for geological studies and 
numerous promising progresses in the exploration and assessment of 
mineral resources with the help of BD have been achieved. (e.g., Zuo and 
Xiong, 2018; Li et al., 2020): 

Zhao, (2015) proposed and introduced BD concepts into geosciences, 
anticipated the idea that digital mineral exploration can realize a leap 
from mathematical geology to digital geology and fill the gaps of 
traditional qualitative exploration, and carried out scientific quantita
tive assessment and analysis on mineral prediction. Xiao et al. (2015) 
investigated the basic theoretical principles for the prediction and 
evaluation of mineral resources and summarized the major processes in 
the digital and information age with the help of prediction methods 
during the age of BD. Yu et al. (2015) proposed new geological big data- 
based models to quantitatively predict and evaluate mineral resources. 
Zheng et al. (2015) suggested that the national geological information 
service system could boost the share of geological information under the 
big data setting and balance the data service and information knowledge 
service. Chong and Shi, (2015) provided an overview of content, scope, 
and findings of BDA, and discussed its future evolution. Xiong et al. 
(2018) applied BD and a deep learning algorithm to process geoscience 
data to identify and integrate anomalies related to skarn-type iron 
mineralization. The results demonstrated that BD supported by deep 
learning methods is a potential technique to be considered for use in 
MPM. Zuo and Xiong (2018) identified the geochemical anomalies 
related to Fe polymetallic mineralization through BD of regional 
geochemical stream sediment, with the support of machine learning 
methods. Zuo and Xiong (2020) conducted a case study on geochemical 

Fig. 1. Geological map of the TCS range, indicating the rock units, main areas of mineralization, and related structures (based on 1:250,000 geologic map of Toroud) 
(modified after Ziaii et al., 2010; Geological Survey of Iran (GSI), 1978). AMB: Alborz magmatic belt, UD: Urumieh-Dokhtar zone, TCS: Toroud-Chah Shirin range. 
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exploration data mapping, using Geoscience BD and concluded that 
geoscience BD is a new research paradigm to investigate the spatial 
association of geochemical patterns, mining elemental association, and 
recognizing geochemical anomalies associated with mineralization via 
geo-computation and geo-visualization techniques in support of mineral 
exploration. Li et al. (2020) used geological BD and deep convolutional 
neural network to extract spatial distribution characteristics and the 
relevance of various ore-controlling factor layers. Chen et al. (2022) 
used BDA based on big geochemical data (5683 samples) and machine 
learning technique to predict the tectonic background more accurately. 
Li et al. (2022) investigated the development of intelligent methods for 
mineral resource prediction under the background of geological BD. 
Zhang et al. (2023) demonstrated a general method based on remote 
sensing data (e.g., big data) and machine learning technique to provide a 
form of secondary geochemical data that integrates the most desirable 
aspects of remote sensing data. 

Gold potential metallogenic belts around the world have been 
identified by Safonov (1997), and two main gold metallogenic belts have 
been located in Iran: the NW-trending Urumieh-Dokhtar zone, and the 
Alborz magmatic belt in northern Iran. These belts continue to neighbor 
the Zod gold mine, the largest in Armenia and Azerbaijan (Safonov, 
1997). The NE-trending TCS belt is located in the central to the eastern 
part of the Alborz magmatic belt (Fig. 1), which has a complex tectonic, 
magmatic, and stratigraphic history (Alavi, 1996; Shamanian et al. 
2004; TaleFazel et al. 2019). The Gandy deposit is located in the 
southern part of the TCS (Figs. 1 and 2). It is in the Moaleman area and 
positioned at ~ 300 km east of Tehran. The exposed veins of this deposit 
have been exploited. Because of exploration issues, this mine was 
abandoned During 2004–2020. Various problems have to be overcome 
for exploration of such buried deposits in covered regions, such as in
direct and weak geo-information related to buried deposits acquired 
from geochemical surveys due to complex overprinting relationships 
arising from multi-formational mineralogical and geochemical pro
cesses; and incomplete and poor coverage of geo-information due to 
masking effects and monomineral sampling difficulties (Cheng, 2012). 
The regional geochemical survey covered 42000 km2 in north-central 
Iran was carried out during 1993–1995 by the Ministry of Mines and 
Metals of Iran and Jiangxi company, China, producing 26 map sheets at 
a scale of 1:10000, including the TCS range. The results of the evaluation 

of precious metal anomalies indicated Au, Cu, Pb, and Zn as the main 
prospecting elements, also five prospective districts including Gandy for 
detailed prospecting (Ministry of Mines and Metals of Iran, 1996). 
Subsequent works have identified these districts as epithermal-type 
prospects. To date, some studies have been conducted on the Gandy 
deposit (Badakhshanmomtaz, 2003; Ziaii et al., 2010) and nature and 
genesis of Gandy were not studied in detail (TaleFazel et al., 2019). 
Shamanian et al. (2004) indicated that Gandy is divided into (I) brec
ciation, (II) fracture filling, and (III) crustiform banding. In stage I, 
native gold is commonly found within partially oxidized pyrite and 
secondary iron oxides and hydroxides and coexists with galena and 
chalcopyrite in stage II. Fard et al. (2006) indicated that alteration and 
mineralization have occurred in two stages that resulted in the forma
tion of the argillic alteration and brecciation of the host rock; and 
precious and base metal mineralization, respectively. Keynejad et al. 
(2011) and Rezaeeshahzadeh et al. (2012) introduced three principal 
fault and fracture systems including NE-SW, NW-SE, and E-W trending. 
They concluded that mineralization has occurred along faults and 
fractures and most mineralized veins are controlled by NE-SW and E-W 
trending fractures. 

In this research, BDA based on mineralogical and geochemical type 
(MGT) modeling were applied to process geoscience big data and 
identify geochemical anomalies associated with multi-MGT gold 
mineralization in the Gandy deposit. The buried, hidden and deep ore 
bodies were explored using mining geochemistry approaches presented 
in this study. Also, the exploration challenges of the Gandy deposit were 
solved using the BDA developed in this research. 

2. Geological setting of study area 

2.1. Regional geology 

There are two main gold metallogenic belts have been located in Iran 
(Safonov, 1997): the NW-trending Urumieh-Dokhtar zone, which runs 
parallel to the Zagros thrust, and the Alborz magmatic belt in northern 
Iran. The NE-trending Toroud-Chah Shirin (TCS) belt, which lies in the 
central to eastern part of the Alborz magmatic belt (Alavi, 1996; Sha
manian et al. 2004; TaleFazel et al. 2019), is the largest known gold and 
base metal province of Iran (Safonov, 1997). Alavi (1991 and 1996) 

Fig. 2. Geological map of the Gandy deposit.  

M. Abedini et al.                                                                                                                                                                                                                                



Ore Geology Reviews 161 (2023) 105653

4

suggested that the TCS range is related to the Eocene magmatism in the 
Central Iran magmatic zone to the south (Alavi, 1991; Alavi, 1996; 
Shamanian et al. 2004; TaleFazel et al. 2019). The Tertiary igneous 
rocks show that the western part of the Alborz belt merges with the 
Urumieh-Dokhtar zone (Shamanian et al. 2004). Hassanzadeh et al. 
(2002) suggested that the two belts were once a single arc but separated 
by intra-arc extension that started in the late Eocene (Hassanzadeh et al. 
2002; Shamanian et al. 2004). According to the recent review, the 
Alborz belt includes TCS. TCS range mainly consists of Eocene volcanic 
and pyroclastic rocks and equivalent subvolcanic and intrusive bodies, 
although there are scattered outcrops of metamorphosed Paleozoic and 
Mesozoic rocks. Structural patterns are controlled by two principal 
strike-slip faults, Anjilow in the north and Toroud in the south, both with 
NE trending as shown in Fig. 1. 

TaleFazel et al. (2019) suggested that orthogonal subduction of the 
Lut microplate beneath the Turan Plate may have played a significant 
role in sulfide mineralization. The strike-slip faults movement may also 
have been important in the ore-forming process. The ore-forming fluids 
were mainly of magmatic-hydrothermal origin (e.g., Gandy). According 
to the distribution of mineralized systems in the TCS arc, the majority of 
the ore deposits are epithermal (e.g., Tale Fazel et al., 2019; Eskandari 
et al., 2023). The presence of geochemical anomalies and ore deposits 
showing abandoned mines with similar epithermal characteristics sug
gests that the TCS range is prospective for high-grade gold veins and 
base metal epithermal deposits (Shamanian et al., 2004). 

2.2. Local geology 

The Gandy epithermal deposit is located in the TCS belt (Fig. 1). The 
local stratigraphy from oldest to youngest includes the following: (1) A 
sequence of thin-bedded volcaniclastic siltstones and sandstones in the 
lower section, Rhyolitic tuffs and tuffaceous sandstones in the upper part 

(Hushmandzadeh et al., 1978; Shamanian et al., 2004); (2) Lapilli tuffs, 
volcanic breccias, and intermediate lava flow unconformably overlie the 
lower unit; (3) Rhyolitic to rhyodacitic domes of Eocene or much 
younger (Shamanian et al., 2004). The fractures and faults have N 50◦ to 
60◦ E strikes and 50◦ to 80◦ SE dips and were formed by movement on 
the NE-trending Toroud fault (Shamanian et al., 2004). 

2.3. Mineralization 

Mineralization of the Gandy Au–Ag ± Pb–Zn deposit occurs as 
shallow, massive lens-shaped bodies and as steeply dipping veins and 
breccias. The veins and breccias consist of galena, sphalerite, pyrite, 
chalcopyrite, quartz, barite, and carbonate minerals and is accompanied 
by alteration halos of quartz, illite, and calcite. The breccias include 
economically important gold and base metal sulfides. The veins include 
quartz-carbonate assemblages and economically important but narrow 
veins of base metal sulfides. The main ore minerals are chalcopyrite, 
pyrite, sphalerite, galena, and chalcocite. The gangue minerals are 
quartz, barite, calcite, dolomite, chlorite, sericite, chalcedony, and 
epidote. In the vicinity of the mineralization, the host rocks are altered 
to kaolinite–sericite–carbonate ± chlorite (Shamanian et al., 2004; Fard 
et al., 2006; TaleFazel et al., 2019). Native gold occurs within partially 
oxidized pyrite and secondary iron oxides such as goethite, in breccias. 
Also, gold grains coexist with galena, chalcopyrite, and their supergene 
alteration products, such as cerussite and chalcocite, in the fracture- 
filling structures (Shamanian et al., 2004). The chemical composition 
of samples taken from veins of the Gandy deposit was investigated and 
the result showed positive correlations between Zn and Au. 

3. Materials and methods 

Fig. 3 demonstrates the methodological flowchart to identify and 

Fig. 3. Graphical representation of workflow used in this research.  
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assess the multi-MGT geochemical anomalies in the Gandy gold deposit. 

3.1. Big data analytics (BDA) 

BD is defined as a new generation of technologies and architectures, 
designed to economically extract value from huge volumes of a wide 
variety of data, by enabling high-velocity data capture, storage, dis
covery, and/or analysis’ (Gantz and Reinsel, 2012; Zakir et al., 2015). 
Some researchers define big data based on its attributes: 

The concept of BD given by Doug Laney (2001) was characterized by 
volume (consisting of enormous quantities of data), velocity (created in 
real-time), and variety (being structured, semi-structured and unstruc
tured), acknowledged as 3Vs (Zakir et al., 2015; Tsai et al., 2015; Kitchin 
and McArdle, 2016). It points out that big data does not simply mean 
large datasets (big Volume) but also efficient dataset management (big 
Velocity) and great heterogeneity (big Variety) (Baumann et al., 2016). 
However, the concept of D. Laney was expanded to five characteristics 
(5Vs), namely, volume, velocity, variety, value, and veracity (Qiu et al., 
2016; Nti et al., 2022). The first “V” (volume) denotes the data size. The 
second “V” (velocity) refers to the changing rate of the data. The third 
“V” (variety) denotes the multiplicity, heterogeneity, and diverse for
mats of data and different kinds of uses and ways of analyzing the data. 
The fourth “V” (value) is the most essential and irreplaceable charac
teristic because of the power to transmute data into a piece of valuable 
information. The fifth “V” (veracity i.e. addressing quality and uncer
tainty) (Baumann et al., 2016) refers to the credibility of the data (Nti 
et al., 2022). These definitions highlight the challenges researchers face 
when processing big data. 

The reason is that earth sciences raise significant challenges in terms 
of storage and computing capabilities, as: (1) Earth sciences include a 
wide range of applications: (e.g., Geology) and make use of heteroge
neous information (Big Variety): covering a diverse temporal range (e.g., 
geological studies), supporting a wide spatial coverage, modeling many 
different geospatial data types; (2) Earth sciences are based on obser
vations and measurements coming from in situ and remote sensing data 
(Big Volumes); (3) They make use of complex scientific modeling to 
study complex scenarios requiring fast processing (Big Velocity) (Bau
mann et al., 2016). 

BDA practically involves big data and analytics, and how these two 
have teamed up to create one of the current trends in mining 
geochemistry. BDA is applying analytical methods and techniques on big 
datasets to uncover patterns in geoscience BD (Baumann et al., 2016). 
BD are high-dimensional, diverse, gigantic, complex, incomplete, and 
noisy, making data pre-processing difficult in BDA. Therefore, BDA de
signers need to manage the data pre-processing stage (e.g., data clean, 
sampling, and compression) highly and efficiently (Nti et al., 2022). 

The importance of applying BDA to mining geochemistry is to 
generate the geochemical models using different kinds of BD, to identify 
the characteristics of the distribution of trace element contents in 
monominerals, and to assess the multi-formational geochemical anom
alies. BDA using full samples, instead of partial samples, permits more 
detailed exploratory analysis among all the available data. Mathemat
ical methods for evaluating multi-MGT geochemical anomalies 
commonly focus on separating anomalies from the background. BDA can 
overcome these limitations by using the entire geochemical dataset of 
monomineral samples to identify multi-MGT anomalies and quantify 
their relations with known mineralization patterns. 

The BD used to identify the MGTs of multi-formational geochemical 
anomalies comprises the results of the analysis of 9440 monomineral 
samples (i.e., 8640 samples of pyrite, 362 samples of galena, and 438 
samples of sphalerite) extracted from the 100 hydrothermal gold de
posits in CIS (collected by S.V. Grigorian, T.T. Liakhovich, M. Ziaii, and 
I.I. Getmansky) (Ziaii, 1999; Grigorian et al., 1999a, 1999b; Grigorian 
and Liakhovich, 2000). 

According to the obtained MGTs from MGT models, the databank 
used to assess the multi-formational anomalies comprises the 

polymetallic deposits of Altai (i.e., Guslyakovskoye deposit) (collected 
by M. Ziaii under the supervision of S.V. Grigorian) (Ziaii, 1999). These 
geochemical BD has been used to assess the multi-MGT geochemical 
anomalies related to gold mineralization. 

3.2. Methodology 

The essential factors for the identification of geochemical anomalies 
can be categorized into the geochemical landscape, mineralogical and 
geochemical type (MGT) of anomalies, and geochemical zonality 
(Sochevanov, 1961; Ziaii et al., 2011; Ziaii et al., 2012; Zuo et al., 2016; 
Macheyeki et al., 2020; Heidari et al., 2021). Recognition of hydro
thermal alteration zones has no critical role to distinguish blind 
mineralization (BM) from zone dispersed mineralization (ZDM) at a 
local scale (Ziaii et al., 2009a; Timkin et al., 2022). The multi-MGT 
anomalies associated with gold mineralization were formed by com
plex geochemical processes, with many geochemical elements from the 
host and source rocks involved in water–rock interactions, leading to 
complex geochemical patterns. 

3.2.1. Geochemical landscape 
The concept of geochemical landscape, defined by Perelman (1975), 

refers to an epigenetic zone where the conditions of elemental migration 
were markedly changed, leading to a significant accumulation of certain 
elements. The geochemical landscape is identified according to the 
physical and chemical properties of soil, vegetation characteristics, 
natural moisture conditions, groundwater level, the mineralogical 
composition of soil and underlying rocks, and the presence or absence of 
anthropogenic impact. 

The geochemical landscape conditions of the TCS belt (e.g., Gandy 
area) are mountainous and arid landscapes. The main characteristics of 
arid landscape posing problems to geochemical exploration are as fol
lows: eliminating the geochemical response by considerable admixtures 
of aeolian materials; producing false anomalies by mechanical barriers 
where minerals with higher specific gravity, unrelated to true anomalies 
may be concentrated; the predominance of mechanical weathering over 
chemical weathering; poorly developed drainage systems; changes of 
optimum grain fraction size from rugged regions to peneplain areas. The 
results of studies conducted by many researchers have shown that sta
tistical methods are not satisfactory to recognize geochemical anomalies 
due to the complex geochemical conditions in arid landscapes (e.g., 
Arkhipov et al., 1990; Ziaii et al., 2007; Kuzmenkova, and Vorobyova, 
2015). 

There are two coefficients to describe the features of a geochemical 
landscape: the mineralization coefficient (Cm) and the productivity 
coefficient (K). If it is assumed that among samples collected along a 
profile (ηA(α)), ηA(α)ore is the number of samples identified as abnormal 
and falling inside the contour of a mineralization zone. The minerali
zation coefficient (Cm) can defined as follows (Grigorian, 1985): 

Cm =
(ηA(α)ore)
(ηA(α))

(1) 

Both coefficients are used to calculate the vertical geochemical 
zonality coefficient (Vz) (Grigorian, 1985; Solovov, 1987; Arkhipov 
et al., 1990). 

Vz =
CmBa × Ba × CmBa × Ba
CmNi × Mo × CmNi × Ni

(2) 

In this research, considering the mentioned features, the minerali
zation coefficient (Cm) was used to create the geochemical zonality (Vz) 
models for evaluating the multi-formational geochemical anomalies in 
the Gandy area. This approach has allowed the conditions of migration 
and accumulation of Cm in the Gandy deposit to be revealed and assisted 
in the understanding of migration and accumulation conditions of Cm. 

The mining geochemistry geo-information system has been devel
oped for studying the distribution features of technical sampling in arid 
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terrains. A series of landscape-geochemical maps was made at local and 
regional scales, and the Cm conditions were determined in the study 
area. The data processing and map production used a variety of geo- 
information technology (Auto CAD 3D map, ArcGIS). This approach 
allowed (1) a spatial analysis of technical sampling distribution in the 
arid relief; (2) the extracted information to be summarized, and (3) 
different mapping layers and attribute data to be combined. For this 
purpose, a special object-oriented mapping database of relief data, 
environmental and mining geochemistry properties, and specification of 
technical migration and accumulation of the study area, were 
developed. 

3.2.2. Mineralogical and geochemical type (MGT) of anomalies 
The quantitative evaluation of multi-formational anomalies is 

applied using the mineralogy and chemistry of ores and primary haloes 
in the deposits and geochemical anomalies (Ziaii et al. 2012). In this 
study, three analytical techniques were utilized to identify the relation 
between the trace element contents of monominerals (e.g., BD) and 
MGTs of anomaly. There are three components to apply these methods: 
(1) a database of trace element contents in monominerals of gold de
posits or MGT, (2) a database on a geochemical anomaly area, and (3) a 
data analytical technique (Ziaii et al., 2009b). The trace element con
tents of monomineral of the gold deposits allowed discrimination be
tween the various MGTs. 

The classification of gold deposits is an intricate problem because of 
the complexity of the gold element. The trace elements (e.g., Au) may be 
concentrated as the primary or secondary haloes in endogenic and 
exogenic deposits with multi-formational types. Although the big data of 
trace elements contents in monominerals are available in world litera
ture, their dispersion and concentration patterns have not been 
investigated. 

3.2.2.1. Bayesian method. The study of Bayesian method is aimed at 
mastering the Bayesian approach to probability theory as one of the 
consistent methods of mathematical reasoning under uncertainty. In the 
Bayesian approach, probability is interpreted as a measure of ignorance 
rather than objective randomness. Simple rules, such as the total prob
ability formula and Bayes’ formula, allow reasoning under conditions of 
uncertainty. On this basis, the Bayesian approach to probability theory 
can be considered as a generalization of classical Boolean logic. The goal 
is to apply the Bayesian approach to solving BD problems. The Bayesian 
approach makes it possible to effectively take into account various 
preferences when constructing decision prediction rules. 

The different patterns of impurity elements in pyrite, galena, and 
sphalerite are coincident with the classification of gold deposit types and 
perhaps a result of different mineralizing processes. In this research, the 

Bayesian method is utilized to identify the MGT, calculate the condi
tional posterior probabilities, and make decision-based on a comparison 
of obtained magnitudes. If the number of MGT in set A is equal to m, 
then each object is characterized by indications. Suppose: 

x1 = x0
1, x2 = x0

2, ..., xn = x0
n,Kn =

{
x0

1, x0
2, x

0
3, ..., x

0
n

}
(3) 

The probability of realization of an event Kn will be determined 
using Bayes’ formula: 

P(Bi|Kn) =
P(Bi).fi(x0

1, x0
2, x0

3, ..., x0
n)∑m

i=1P(Bi).fi(x0
1, x0

2, x0
3, ..., x0

n)
(4)  

where i is class of MGT. The value of P(Bi).fi(x0
1, x0

2, x0
3, ..., x0

n) is depen
dent with the probability compound: 

P(Bi).fi(x0
1, x

0
2, x

0
3, ..., x0

n) =
∏n

i=1
P(Bi)fi(xi) (5) 

The applied method is based on the prior probability of the Bayesian. 
The trained classifier applies Bayes’ rule to calculate the posterior 
probabilities of all states of the class variable and predicts the class label 
that takes the highest posterior probability. 

3.2.2.2. Geochemical spectrum method. The method of the geochemical 
spectrum of elements was proposed to identify and calculate the 
discriminant function. This method has been used to compare two 
similar geochemical fields with different economic natures using simple 
graphical charts (Solovov and Garanin, 1968; 1972), separate different 
rocks in terms of geochemistry and similar formations in terms of having 
or not having potential (Beus and Grigorian, 1977). The results showed 
that the discriminant function should be simple to represent geological 
models. Accordingly, the following function is obtained utilizing one of 
the simplest discriminant functions with variables C1 and C2 of two 
similar formations or fields (I, II) (Beus and Grigorian, 1977). 

υ =
(C1)I

(C1)II
(6) 

This linear function can be represented by a 2D plot between C1 and 
C2 variables. If the ratio (C1)I/(C1)II < 1 is satisfied, this function can 
belong to class II for any unknown sample, and in case (C1)I/(C1)II > 1, It 
belongs to class I. Thus, these two classes are separated using a simple 
linear discriminant function in a 2D chart. The extension of this 
graphical method in two similar classes (each with several variables) is 
known as the geochemical spectrum method. The function υ is a 
parameter which is separately calculated for each class, and if the ratio 
υ1/υ2 > 1 is satisfied, this determines the difference in the chemical 
combination between these two similar classes (Beus and Grigorian, 

Fig. 4. Graphical representation of the hybrid model construction for a hypothetical monomineral.  
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1977). The geochemical spectra method for monominerals is more 
simplified (compared to Bayesian) to determine the MGTs of gold ore 
occurrences. 

3.2.2.3. Hybrid method. The hybrid method is constructed to improve 
the efficiency of the analytical techniques. The capabilities of two 

techniques including the Bayesian and geochemical spectrum are 
merged as a hybrid. The hybrid model combines the outputs of the in
dividual techniques and thus obtains the advantages of all used tech
niques. The hybrid model construction is represented in Fig. 4. A group 
of MGT multiplicative coefficients is defined to identify a specific MGT. 
The determined MGTs of the Bayesian and geochemical spectrum 

Fig. 5. The geochemical spectrum-in-MGT models for (A) pyrite - Kpyrite = Zn × Cu × Pb × Ag/As × Co × Co × Ni, (B) galena – Kgalena = As × Mn × Au/Sb × Zn ×
Zn, (C) sphalerite – Ksphalerite = Cd × Ag × Pb × Sb × Sn/Cu × Mn × Mn × Co × Ga. 
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models for each monomineral (e.g., pyrite, galena and sphalerite) are 
considered as boundaries of this group. Then, the Bayesian is applied to 
this group, and MGT of the hybrid model is obtained. 

3.2.2.4. Vertical geochemical zonality. The vertical geochemical zonality 
(Vz) was revealed in the distribution of trace elements in monominerals 
(pyrite, galena, and sphalerite), which is recommended to evaluate the 
erosional level of multi-MGT geochemical anomalies of gold deposits. 
The Vz in the distribution of monominerals basically repeats the Vz of 
primary haloes. This zonality has greater contrast compared to the 
zonality of primary haloes. A monotonous decrease with depth was 
found in the values of Vz, which reflects the identical nature of both 
types of Vz. Due to a kind of “impoverishment” of elements of bulk 
samples in mineral aggregates formed in ore-bearing rocks during the 
mineralization, significant contents are recorded in minerals for several 
elements that are not detected by the same analysis in bulk samples. The 
alternative or combined use of high-contrast zonality in the distribution 
of trace elements in monominerals will improve the reliability of the 
assessment of ore occurrences (Ziaii, 1999). 

3.3. Sampling, sample preparation and sample analysis 

In this research, the rational mineralogical and geochemical sam
pling technique was used to evaluate the multi-MGT anomalies. Rational 
sampling refers to collecting, organizing, analyzing, and interpreting 
data in a way that makes sense in the context of data. The lith
ogeochemical samples were collected using a chip channel sampling 
method and taken from the geochemical haloes of zones (G1, G2, G3, 
G4, T1, T2, T3) of the Gandy deposit (Fig. 2). Using a binocular mi
croscope, the size fraction was selected in which pyrite, galena and 

sphalerite were concentrated and monomineral samples were acquired. 
Other samples, in which the size-fraction is small, were crushed, ho
mogenized, and divided into two parts: Ore minerals were analyzed as 
bulk samples. Ore mineral concentrates were examined and refined by 
handpicking under a binocular microscope to obtain 10 gr of high purity 
concentrate. Finally, the concentrates were powdered in an agate mortar 
(Ziaii, 1999). This ore mineral concentrates were also considered as 
monomineral samples. In total, 59 monomineral samples and 163 bulk 
samples were collected. All samples were analyzed by ICP-MS and fire 
assay. 

4. Results and analysis 

4.1. Mineralogical and geochemical type models 

Big Data (Monomineral data extracted from the 100 hydrothermal 
gold deposits in CIS) and analytical techniques (Bayesian, Geochemical 
spectrum, and Hybrid) were used for the mineralogical and geochemical 
type modeling. The composition of impurity elements in minerals is not 
the same because of the differences in the methods of analysis of mon
omineral samples. So, only recorded elements in all MGT were consid
ered to calculate for each monomineral. These elements are extracted 
from the available BD to select the most frequent elements in the 
monominerals. For pyrite it is: As, Co, Zn, Ni, Pb, Cu, Ag, Galena: As, Sb, 
Au, Mn, Zn and Sphalerite: Cd, Ag, Sb, Co, Mn, Cu, Pb, Sn, Ga. The MGT 
identification of gold deposits consists of the use of Bayesian, multipli
cative coefficients selected by the geochemical spectra, and hybrid 
methods. 

The Bayesian method was applied to the extracted BD on the 
composition of impurity elements in the most common monominerals 
(e.g., pyrite, galena, and sphalerite) such as posterior probabilities and 

Table 1 
Results of MGT identification for pyrite, galena and sphalerite samples collected 
from different zones of the Gandy deposit.  

Zones Monominerals Probability of 
identification 
(%) using 
Bayesian 
modeling 

Discriminant 
function using 
geochemical 
spectrum 
modeling 

Probability of 
identification 
(%) using 
hybrid 
modeling 

G1 Galena Au + P (99.20) 1.2E-09 (Au +
P, Au + S) 

Au + P (74.80), 
Au + S (24.60) 

Sphalerite Au + P (91.20) 2.5E + 02 (Q +
S, Q + P) 

Au + P (96.20), 
Q + S (3.80) 

G2 Pyrite Au + P (61.70) 2.5E + 02 (Au 
+ S + P) 

Au + P (67.0) 

Galena Au + P (89.30) 2.2E-08 (Au +
P, Au + S) 

Au + P (98.7) 

G3 Galena Au + P (98.00) 2.1E-07 (Au +
P, Au + S) 

Au + P (71.60), 
Au + S (28.40) 

G4 Galena Au + P (88.60) 1.0E-07 (Au +
P, Au + S) 

Au + P (72.9), 
Au + S (27.1) 

T1 Pyrite Au + P (90.40) 6.66E + 00 (Au 
+ S + P, Au + S 
+ Q) 

Au + P (99.77) 

T2 Galena Au + P (88.82) 4.62E-05 (Au +
S, Au + P) 

Au + P (90.25), 
Au + S (9.74) 

T3 Pyrite Au + S (65.14) 3.01E + 00 (Au 
+ S + Q, Au +
P) 

Au + S (72.15), 
Au + S + Q 
(27.12)  

Table 2 
Cm values of trace elements used for Vz models.  

Zones Cm Values of Trace Elements 
Ag As Ba Co Cu Mo Ni Pb Zn 

G1  0.03  0.14  0.19  0.22  0.08  0.17  0.05  0.03  0.14 
G2  0.11  0.13  0.17  0.15  0.17  0.11  0.13  0.11  0.13 
G3  0.10  0.10  0.20  0.20  0.10  0.30  0.30  0.10  0.10 
G4  0.10  0.10  0.20  0.20  0.10  0.30  0.30  0.10  0.10 
T  0.02  0.19  0.21  0.10  0.15  0.07  0.05  0.10  0.17  

Fig. 6. The landscape-geochemical map of zones G1, G2, G3, G4, T1, T2 and T3 
in the study area. 
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discriminant analysis, and the relations of the trace elements in mono
mineral samples for each MGT were investigated. So, three MGT models 
based on Bayesian method have been constructed for pyrite, galena, and 
sphalerite. These models are referred to as the Bayesian-in-MGT models. 

The geochemical spectrum method was also used to construct the 
MGT models. These models are referred to as the geochemical spectrum- 
in-MGT models. In order to process the extracted BD, the average con
tents of impurity elements of monominerals for each MGT were calcu
lated. Then, graphs of discriminant functions were constructed for the 
distribution of average contents of impurity elements for all studied 
monominerals of gold deposits. According to paired comparisons of 
numerous graphs, the most contrasting (optimal) discriminant functions 
were selected to differentiate the MGT of gold deposits for pyrite, galena 
and sphalerite. 

Fig. 5-A shows the graph reflecting the changes in the proposed 
discriminant function (Zn × Cu × Pb × Ag/As × Co × Co × Ni) in the 16 
MGTs for pyrite. Based on the extracted analytical information on the 
geochemical spectrum, pyrite is geochemically the most studied for ore 
deposits especially for gold. So, pyrite is considered the most universal 
monomineral indicator for MGT identification of gold deposits. As 

shown in Fig. 5-A, the contrast of the change in this coefficient reaches 
ten orders of magnitude. The most reliably identified MGTs are the most 
distant from each other, using the proposed coefficient. Four MGTs 
including Au + polymetals, Quartz + Au, Au + Quartz, Au + Ag are the 
least contrasting differences from each other. Closely spaced MGTs 
differentiate less contrast and less reliably. So, the possibilities of other 
monominerals including galena and sphalerite were investigated to 
solve this problem. 

Fig. 5-B shows the graph indicating the changes in the proposed 
discriminant function (As × Mn × Au/Sb × Zn × Zn) in the 6 MGTs for 
galena. It is quite contrasting (almost ten orders of magnitude) to 
differentiate the MGTs by galena. Two MGTs including Quartz + Sulfide, 
Quartz + Polymetals seems to be insufficiently reliable (the difference is 
less than one order of magnitude). So, impurity elements of reference 
samples for other monominerals (i.e., sphalerite) can be used to provide 
more reliable identification of these two MGTs. 

Fig. 5-C shows the ranked graph of changes in the proposed 
discriminant function (Cd × Ag × Pb × Sb × Sn)/(Cu × Mn × Mn × Co 
× Ga) in the 5 MGTs for sphalerite. The previous mentioned MGTs differ 
significantly in the value of the coefficient (more than three orders of 

Fig. 7. The geochemical zonality models of the polymetallic deposits of Altai. (A) Strezhanskoye deposit: (1) Ba × Ag × Pb/Cu × Cu × Zn; (2) Ba × Pb/Cu × Zn; (3) 
Ag × Pb × Zn/Co × Ni × Mo; (4) Pb × Zn × Cu/Co × Ni × Mo; I- Ore body, II- Graphs of zonality coefficients with barium, III- Graphs of zonality coefficients without 
barium; (B) Guslyakovskoye deposit, I- Ore bodies, II- Ore-bearing zone, III- Graph of Ba × Ba/Mo × Ni coefficient (Grigorian, 1992). 
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magnitude). 
The geochemical spectrum-in-MGT models for indicator mono

minerals can be recommended as standards for the multi-formational 
affiliation of geochemical anomalies. The most informative model is 
the standard for pyrite (16 MGTs). For other monominerals, standards 
have been created for a smaller number of MGT (6 and 5 MGTs for 
galena and sphalerite, respectively). These models can be implemented 
for the preliminary identification of MGT of gold deposits (Ziaii, 1999). 

The MGT models based on Bayesian, geochemical spectrum, and 
hybrid methods for pyrite, galena and sphalerite were applied to identify 
the MGTs of multi-formational anomalies of the Gandy deposit 
(Table 1). 

The Bayesian-in-MGT model was utilized to calculate the probabili
ties of MGT on a scale of 16 MGTs for pyrite samples collected from 
zones G2, T1 and T3. Based on the results, Au + Polymetals MGT was 
identified with the maximum value of probability. Also, the geochemical 
spectrum-in-MGT model was used to calculate the most effective 
discriminant function (Zn × Cu × Pb × Ag/As × Co × Co × Ni) for pyrite 
samples (see Fig. 5-A). The MGT model based on hybrid was constructed 
to acquire the advantages of Bayesian and geochemical spectrum 
methods. So, the group of MGTs was specified and the MGT probabilities 
of this group were determined. As shown in Table 1, the Au + Poly
metals and Au + S MGTs were identified. 

The Bayesian-in-MGT model was used to determine the probabilities 
of MGT on a scale of 6 MGTs for galena samples collected from zones G1, 
G2, G3, G4 and T2 of Gandy deposit. Based on the results, the probability 
of Au + Polymetals MGT is more than 80% in most cases. Also, the 
geochemical spectrum-in-MGT model was used to calculate the pro
posed discriminant function (As × Mn × Au/Sb × Zn × Zn) for galena 
samples (see Fig. 5-B). Then, the MGT model based on hybrid was uti
lized to identify the group of MGTs and obtain the MGT probabilities of 
this group. As shown in Table 1, the probability of Au + Polymetals MGT 
is more than 70% and the Au + Polymetals and Au + S MGTs were 
identified. 

The Bayesian-in-MGT model was utilized to obtain the probabilities 
of MGT on a scale of 5 MGTs for sphalerite samples taken from zone G1 
of the Gandy deposit. Based on the results, the probability of Au +
Polymetals MGT is 91.20%. Also, the geochemical spectrum-in-MGT 
model was used to calculate the discriminant function (Cd × Ag × Pb 

× Sb × Sn/Cu × Mn × Mn × Co × Ga) for sphalerite sample (see Fig. 5- 
C). Then, the probabilities of the MGT group specified by hybrid model 
were determined. As shown in Table 1, Au + Polymetals MGT was 
identified with a probability of 96.20%. The results of analyzing 59 
monomineral samples of pyrite, galena, and sphalerite from the Gandy 
deposit show a multi-MGT anomaly superposition that is a combination 
of two MGTs: Au + Polymetals and Au + sulfide. 

4.2. Geochemical zonality models 

In this research, the mineralization coefficients (Cm) were calculated 
for different zones of the Gandy deposit (Table 2). These were used to 
calculate the vertical zonality coefficient. Therefore, the geochemical 
landscape of the TCS (e.g., the Gandy area) were considered to create the 
geochemical zonality (Vz) models for assessing the multi-MGT 
anomalies. 

Several ore mineralization including NE-SW, E-W and NW-SE- 
trending anomalies that are reflecting the underlying geological struc
tures have been recognized (Fig. 6). 

Fig. 7-A and 7-B show the standard geochemical zonality models for 
databank of the polymetallic deposits of Altai. Fig. 7-A shows the Vz 
model of the primary haloes of the Strezhanskoye deposit with depth. 
The graphs 3 and 4 give a sharp inflection, clearly indicating the echelon 
location of the ore bodies. In contrast, the graphs of the Vz with the 
participation of barium are strictly monotonous and do not reflect the 
echelon nature of mineralization. Barium shows a tendency of accu
mulation in the upper parts of the ore zones to form ‘caps’ over the ore 
body, in contrast to the other supra ore elements (i.e., Antimony, Silver, 
etc.). So, the changes of the Vz with the participation of barium (in 
combination with other elements) with depth is more monotonic (Gri
gorian, 1992). 

Fig. 7-B shows the Vz model of the primary haloes of the Guslya
kovskoye deposit with depth. Despite the complex echelon structure of 
the ore-bearing zone, this graph shows a monotonous decrease in the Vz 
with depth. The exceptionally high contrast of this Vz with barium was 
noted. The value of the Vz decreases monotonically by more than 10 
million times, which ensures high reliability of using this model to 
evaluate the erosional surface of the whole ore-bearing zone. The 
described features of barium have been established at some gold 

Fig. 8. Application of the standard geochemical model of the Guslyakovskoye Au + Polymetals deposit to identify the erosional surface. (A) zones G1, G2, G3 and G4, 
(B) zone T1, (C) zone T2, (D) zone T3. 
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deposits (Grigorian, 1992). 
The standard Vz model of the Guslyakovskoye Au-Polymetals deposit 

in Kazakhstan (Fig. 7-B) was utilized to evaluate the multi-formational 
geochemical anomalies of the Gandy deposit and identify their 
erosional surface. Values of Vz decrease downward uniformly, sug
gesting the existence of uniform Vz in primary halos of Au-Polymetals 
deposit. Therefore, vertical variations of Vz allow the distinction of 
mineralization levels and their primary halos (supra ore, upper-ore, ore, 
lower-ore, and sub-ore). The exploration importance of the Vz is to 
recognize the erosional surfaces indicating vertical levels of geochemical 
anomalies. high values of the Vz imply the presence of subcropping 
deposits, whereas low values of the coefficient imply outcropping or 
already eroded deposits. 

The quantitative uniform geochemical zonality model of the Gus
lyakovskoye gold Polymetals deposit was used for the interpretation of 
the results of geochemical sampling in the Gandy deposit. This standard 
model was utilized to identify the erosional surface in zones G1, G2, G3, 
G4, T1, T2 and T3 of the Gandy deposit. The zonality coefficients were 
calculated to assess the ore potential of these multi-formational 
geochemical anomalies and the results were plotted in Fig. 8. 

Zones G1, G2, G3 and G4: The geochemical anomaly G1 is the 

western flank of the Gandy deposit. The plot of the Vz on the standard 
geochemical model (Fig. 8-A) shows zone G1 is promising to the depth. 
The value of the Vz is very high and blind mineralization exists in this 
zone. Zone G2 is the southeastern flank of zone G1. It can be seen from 
Fig. 8-A that the value of the Vz is the highest. It means that a supra-ore 
geochemical anomaly exists in this zone, so, zone G2 is considered 
promising for blind mineralization. Zones G3 and G4 are located next to 
each other in the northeastern flank of zone G2. In these zones, the 
values of the Vz imply outcropping mineralization (Fig. 8-A). 

Zone T1, T2, T3: Zones T1 and T3 are located next to each other in the 
north flank of zone T2. The plots of the Vz on the standard model (Fig. 8- 
B and 8-C) show zones T1 and T2 are promising to the depth. According 
to the high values of the Vz, blind mineralization exists in zones T1 and 
T2. In zone T3, the values of the Vz indicate outcropping mineralization 
(Fig. 8-D, Fig. 6: BH 11). 

5. Discussion and conclusions 

Big data, which has become a new scientific paradigm in the 21st 
century, gives rise to geoscience big data, i.e. mathematical and quan
titative geoscience. The main function of monomineral big data is to 

Fig. 9. Exploration of Buried and hidden mineralization in the eastern part of zone G2 in the Gandy deposit. I- Mineralization (orebody), II- Primary halo, III- 
Bedrock, IV- Weathering crust (Soil) and secondary residual halo, V- Alluvium, VI- The multiplicative indicator of supra-ore elements (Ba × Ba), VII-The multi
plicative indicator of sub-ore elements (Mo × Ni). 
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manage various mineralogical and geochemical types of data that come 
from different multi-MGT geochemical haloes. With more and more data 
being generated, processing large amounts of data in an acceptable time 
has become a major challenge. In order to efficiently extract value from 
monomineral big data, big data analytics has become a key factor to 
reveal hidden information in this big data. Mining geochemistry has 
created and developed a variety of local and mine scale resource pre
diction and assessment methods, achieving beneficial practical results. 
Big data analytics has the potential to impact many facets of mining 
geochemistry. The previous (traditional) mathematical methods for 
identifying the multi-formational anomalies commonly focus on sepa
rating anomalies from the background. Big data analytics can overcome 
these limitations by using the entire geochemical databank to identify 
the multi-formational anomalies and quantify their correlations with 
known mineralization patterns. 

In this research, a new approach for gold-identification of 
geochemical anomaly (IGA) determination was introduced. The pro
posed methodology, which is based on monomineral big data and 
Bayesian, Spectrum and Hybrid (BSH) model is quite inexpensive 
compared with the other exploration methods. There is more than one 
hundred gold-IGA in the Gandy deposits with different MGTs. The 
following steps were performed based on the BSH model in mining 
geochemistry: (1) Identification of mineralogical and geochemical types 
(Table 1); (2) Geometrical identification of gold-IGA (shown in Fig. 9). 
The dip direction of the ore body is determined by the direction of 
displacement of the epicenter of the multiplicative indicator of sub-ore 
elements from the ore-bearing structure which will correspond to the 
fall of mineralization; (3) evaluation of the erosional surface of the gold- 
IGA; (4) Priority ranking of each gold-IGA based on their gold reserves. 
It is worth mentioning that there is the main ore system of structure and 
geometrical gold-IGA which has N 50 to 60 E strike and 50◦ to 80◦ SE dip 
according to the results of the previous studies (e.g., Shamanian et al., 
2004). These four steps were implemented in the Gandy deposit in 2021. 
The results led to the exploration of another ore system that has N 70 to 
80 E strike and 50 NW dip in zone G2. According to the geochemical 
zonality model (Fig. 8-A), zone G2 is considered blind and hidden 
mineralization (Fig. 9). Exploratory drilling with 15◦ angle (Figs. 2 and 
7, BH 8) in the north of zone G2 has intersected the ore body at a depth 
of 130 m and confirmed the results of this research. Also, two other ore 
bodies (i.e., zones G3: BH 2402 and zone T1) are categorized in this new 
ore system (Figs. 2 and 6). During the past two years, the results of 
exploitation up to a depth of 50 m in zones G2, G3 and T1 have 
confirmed the results of this research. The feasibility study, based on the 
proposed approach for gold-IGA, shows effective and useful results. It 
has been demonstrated that in gold multi-MGT mineralization, an 
application of a carefully designed and elaborated BSH model can pro
vide acceptable results. 

Appropriately, the proposed approach in this research has revealed 
multi-MGT geochemical anomalies in the Gandy deposit and the possi
bilities for the occurrence of blind mineralization related to these 
anomalies were evaluated. The results obtained from applying the new 
proposed methodology to the Gandy deposit reveals significant im
provements, comparing the results obtained from previous studies (e.g., 
Shamanian et al., 2004; Fard et al., 2006; TaleFazel et al., 2019). 
Computationally, the introduced technique makes it possible, without 
exploration drilling and time-consuming procedures to distinguish be
tween zones of dispersed ore mineralization and blind mineralization. 
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